| Home | E-Submission | Sitemap | Contact Us |  
top_img
J Radiat Prot > Volume 29(1); 2004 > Article
Journal of Radiation Protection 2004;29(1):41-0.
Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment
Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.;
ABSTRACT
A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.
Editorial Office
#319, Hanyang Institute of Technology Bldg., 222 Wangsimni-ro, Seongdong-gu,Seoul, Republic of Korea
Tel: +82-2-2297-9775   Fax: +82-2-2297-9776
Email: managing.editor@jrpr.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © by Korean Association for Radiation Protection. Developed in M2PI