| Home | E-Submission | Sitemap | Contact Us |  
top_img
J Radiat Prot > Volume 34(3); 2009 > Article
Journal of Radiation Protection 2009;34(3):102-0.
CHANGES IN BODY AND ORGAN WEIGHTS, HEMATOLOGICAL PARAMETERS, AND FREQUENCY OF MICRONUCLEI IN THE PERIPHERAL BLOOD ERYTHROCYTES OF ICR MICE EXPOSED TO LOW-DOSE-RATE $gamma$-RADIATION
Kang, Yu-Mi;Shin, Suk-Chul;Jin, Young-Woo;Kim, Hee-Sun;
ABSTRACT
We exposed ICR mice to low-dose (0.2 Gy) and low-dose-rate (0.7 mGy/h) $gamma$-radiation ($^{137}Cs$) in the Low-dose-rate Irradiation Facility at the Radiation Health Research Institute to evaluate systemic effects of low-dose radiation. We compared the body and organ weights, number of blood cells (white and red blood cells and platelets), levels of biochemical markers in serum, and frequency of micronuclei in polychromatic erythrocytes between low-dose irradiated and non-irradiated control mice. The ICR mice irradiated with total doses of 0.2 and 2 Gy showed no changes in body and organ weights, number of blood cells (white and red blood cells), or frequency of micronuclei in the polychromatic erythrocytes of peripheral blood. However, the number of platelets (P = 0.002) and the liver weight (P < 0.01) were significantly increased in mice exposed to 0.2 and 2 Gy, respectively. These results suggest that a low-dose-rate of 0.7 mGy/h does not induce systemic damage. This dose promotes hematopoiesis in the bone marrow microenvironment and the proliferation of liver cells. In the future, the molecular biological effects of lower doses and dose rates need to be evaluated.
TOOLS
PDF Links  PDF Links
Full text via DOI  Full text via DOI
Download Citation  Download Citation
Share:      
METRICS
1,073
View
9
Download
Editorial Office
#319, Hanyang Institute of Technology Bldg., 222 Wangsimni-ro, Seongdong-gu,Seoul, Republic of Korea
Tel: +82-2-2297-9775   Fax: +82-2-2297-9776
Email: managing.editor@jrpr.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © by Korean Association for Radiation Protection. Developed in M2PI