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Abstract - Biological mechanisms for ionizing radiation effects are different at low doses
than at high doses. Radiation hormesis involves low-dose-induced protection and
high-dose-induced harm. The protective component is associated with a reduction in the
incidence of cancer below the spontaneous frequency, brought about by activation of
defensive and repair processes. The Linear No-Threshold (LNT) hypothesis advocated by the
International Commission on Radiological Protection (ICRP) and the Biological Effects of
Ionizing Radiation (BEIR) Report VII for cancer risk estimations ignores hormesis and the
presence of a threshold. Cancer incidences significantly less than expected have been found
in a large number of epidemiological studies including, airline flight personnel, inhabitants of
high radiation backgrounds, shipyard workers, nuclear site workers in scores of locations
throughout the world, nuclear power utility workers, plutonium workers, military nuclear test
site participants, Japanese A-bomb survivors, residents contaminated by major nuclear
accidents, residents of Taiwan living in %Co  contaminated buildings, fluoroscopy and
mammography patients, radium dial painters, and those exposed to indoor radon. Significantly
increased cancer was not found at doses <200 mSv'. Evidence for radiation hormesis was
seen in both sexes for acute or chronic exposures, low or high LET radiations, external
whole— or partial body exposures, and for internal radionuclides. The ubiquitous nature of the
Healthy Worker Effect (HWE)-like responses in cellular, animal and epidemiological studies
negates the HWE as an explanation for radiation hormesis. The LNT hypothesis is wrong
and does not represent the true nature of the dose-response relationship, since low doses or
dose-rates commonly Ttesult in thresholds and reduce cancer incidences below the
spontaneous rate. Radiation protection organizations should seriously consider the cost and
health implications of radiation hormesis.
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INTRODUCTION

Hormesis is a dose-response phenomenon
characterized by a low dose stimulation and a
high dose inhibition. Hormesis has been
demonstrated with a wide variety of chemical
and physical agents for many diseases, including
cardiovascular disease, diabetes and cancer[1-4].
The radiation hormesis hypothesis states that
low-level ionizing radiation is stimulatory at
cellular, molecular and organismal levels,
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decreasing the incidences of cancer (and other
diseases) below the spontaneous frequency. This
radiocadaptive response to low-dose radiation,
including enhancement of antioxidant defenses,
enzymatic repair of DNA, removal of DNA
lesions, apoptosis, and immunologic stimulation,
is well established in the scientific literature
[15-11] (Figure 1). The benefits are inducible
and transient. The effectiveness of hormesis—
related defense mechanisms varies with dose
and dose-rate. Defenses stimulated at low doses
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Fig. 1. Sequence of molecular and cellular events that leads to smoking-related lung cancer formation and radiation
hormesis-related decrease in expected lung tumor formation.

and high doses cause un-repaired and
misrepaired damage. Thus, the carcinogenic
response to irradiation is suppressed at low
doses and increased from a threshold dose in a
stochastic manner at higher doses, leading to a
curvilinear or U-shaped dose-response curve
[3,12].

In his book, Radiation Hormesis[7], Luckey
describes evidences of radiation hormesis in
workers at nuclear facilities, A-bomb survivors
and many other groups exposed to low doses of
radiation. Luckey predicted that about one-third
of all cancer deaths are preventable by
low—-dose lonizing radiation[5-8]. The hormesis
response was associated with  decreased

mutations, chromosome aberrations, neoplastic
transformations, congenital malformations,
cancer, and increased lifespan[13-18]. The
benefits of small acute or chronic doses are
observed soon after exposure, while the
stochastic effects of higher doses are typically
seen after a long latency period.

The Linear No-Threshold (LNT) hypothesis
does not consider the role of biological defense
mechanisms, but assumes that cancer risk
proceeds in a proportionate linear fashion
without a threshold to a point of zero dose
through the origin. The LNT hypothesis with a
low dose and dose rate effectiveness factor
(DDREF) guarantees that any radiation dose, no
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matter how small, increases the risk of cancer.
In 1951, Lewis determined the number of
leukemia cases in the US which could be
attributed to background radiation using the

LNT  hypothesis[20]l. Current  radiological
protection methods are based wupon the
recommendations of the International

Commission on Radiological Protection (ICRP),
who utilized collective dose and the LNT
hypothesis[152].

The LNT hypothesis is now widely accepted
and applied, even though it has not
beenvalidated by scientific study and is not
consistent with radiobiological datal2,12,25].
BEIR VII, ICRP, Environmental Protection
Agency(EPA) and National Council on Radiation
Protection and Measurements (NCRP) support
the LNT hypothesis for estimation of cancer
risk from exposure to ionizing radiation
[22,28-30]. Little thought has been given by

radiation protection groups, such as BEIR VII
and ICRP[2223], to radiation hormesis
associated adaptive and inducible repair
processes and thresholds at low doses and low
dose-rates[26,27].

EPIDEMIOLOGICAL STUDIES

Many epidemiological studies have been
published that demonstrate radiation hormesis
for low LET, low dose and low dose-rate
exposures to ionizing radiation (Figure 2, Table
1).

There was no increase in cancer among
airline crews and attendants who received
annual doses during flight of 15 to 6.0 mSv
{4041}, The Standardized Mortality Ratio (SMR)
for all cancers in women cabin attendants in
Germany was 0.79, while among men it was
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Table 1. Evidence of radiation hormesis from epidemiological studies of populations exposed to low dose, low

dose-rate, low LET ionizing radiation.

Exposure Group SMR for All Malignant Cancer Reference
US DOE Nuclear Sites 0.75 138
US Shipyard 0.85 141
US Nuclear Power 0.65* 52
Canadian Nuclear Power 074 | 53
UKAEA 0.89 174
Canadian Dose Registry 0.79%x 87
US Radiological Techs 0.73-0.86 94
Japanese Radiological Techs 0.81 171
Canadian Radiological Techs 0.56-0.66 172
German Aircrews 0.71-0.79 42
Chernobyl Cleanup 0.73-0.85 162
USSR Waste Tank Explosion 0.61-0.73 73
Taiwan Residents 0.03 23]

* all solid cancer
x* SIR

0.71. The SMR did not change with duration of
employment[42]. Among Air Canada pilots there
was a statistically significant decreased
mortality from all cancers (SMR = 0.61)[170].

Studies of several million nuclear workers in
nine studies failed to demonstrate any increased
cancer 1iskl8]. Cancer mortality in nuclear
workers at several DOE sites within the US
showed either no increase in overall cancer
incidencel43] or less than expected -cancer
incidences attributable to the Healthy Worker
Effect (HWE)[44-48] (or radiation hormesis).
The Relative Risk (RR, observed/expected) for
all cancers averaged about 0.80. A study of
26,3890 employees of Hanford (Richland, WA)
who were hired between 1944 and 1978 found
evidence of hormesis, particularly for lung
cancer mortality[49,50). An analysis of cancer
mortality was carried out in 106,020 persons
employed at QOak Ridge, Tennessee between
1943 and 1984, The SMR was 0.80 for all
deaths and 0.87 for all cancers. The excess risk
for leukemia was negative[51].

Mortality was examined in workers employed
in 15 nuclear power utilities in the US between
1979 and 1997. - No significant associations were
seen for leukemia. Thislarge cohort displayed a
very substantial radiation hormesis response
with a SMR for all solid cancers of 0.65 and
0.59 for lung cancer[52]. In a cohort of 45468
Canadian nuclear power industry workers
(1957-1994) the SMR for all cancers was 0.74
for combined genders. The SMR for leukemia
in males was 0.68. The SMR for lung cancer
was 0.81 in males and 0.40 in females[53]. The
cancer mortality in China of nuclear plant
workers showed a radiation hormesis effect[173].
Mortality was examined in 176,000 Japanese
nuclear industry workers from 1986-1997. The
SMR for malignant tumors at all sites was 0.94
and 0.97 for lung cancer. No dose-response
trend was noted[54,157].

No positive relationship between cumulative
radiation dose and mortality for solid cancers or
leukemia was found in 50,000 UKAEA
workers[55). However, the SMR for all
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malignant tumors was 0.90 in UKAEA radiation
workers compared to non-radiation workers,
with substantially lower SMR values for all
causes and all cancers during the early years
(1946-1953) of employment with the UKAEA
[174]. In a combined study of nuclear workers
from the US, UK and Canada, it was claimed
that leukemia was significantly associated with
cumulative external radiation dose. This claim
was based on only eight cases of leukemia
spread among four dose groups[55]. The data
showed radiation hormesis at 20-40 mSv (RR=
0.73) and an increased risk only at doses >40
mSv[56]. The SMR for all cancers at the UK
Chapelcross nuclear plant was 0.73; the SMR
for lung cancer was only 0.53[57]. At three UK
nuclear facilities, the SME for lung cancer in
workers with the highest cumulative whole-
body dose (400+ mSv) was 059 for radiation-
monitored workers and 097 for unmonitored
workers[58].

Cohorts of nuclear workers in 15 countries
were evaluated in a pooled data analysis of
cancer risk. Only excess relative risk numbers
were given as determined by the LNT
hypothesis. Risk by dose level was not given.
Even so, at least two of the country studies
exhibited a negative excess relative risk for all
cancers, excluding leukemia. The authors admit
that their data may be confounded by
smoking[59].

A total of 123,661 person-years follow-up was
evaluated in Korean nuclear workers. There was
no dose-response relationship between cancer
incidence and radiation dose. A radiation
hormesis response for total cancer incidence
was observed at doses <50 mSv (RR = 051)
and >50 mSv (RR = 0.44)[60].

The SMR for Department of Atomic Energy
(DAE) radiation workers in India, aged 20-59
years, was 108 (95% CI, 80-138) as compared to
a SMR of 113 (9% CI, 84-149) for DAE
employees who were not radiation workers[61].

The cancer incidence for nuclear workers in
Obninsk, Russia hired before 1981 was
compared with the general population of Russia
during 1991-1997. The Standardized Incidence

Ratio (SIR) in males for all cancers was 0.93
(95% CI: 0.76, 1.12)[62]. Other Russian studies
described a decreased incidence of lung cancer
in nuclear radiochemical workers[14,63].

About 30,000 people lived along the Techa
River during the early years (1949-1956) of the
Mayak nuclear weapons facility operation in the
Southern Urals. Radiation exposures involved
both external and internal sources from
contaminated river sediments ad ingested food.
External exposure involved BiCs gamma rays,
and internal beta exposure involved with %5y
and other radionuclides. Radiation dose estimates
were difficult to accurately  determine.
Significant leukemia risk occurred only for
doses >0.2 Gy to bone marrow. The RR for
solid cancers was 0.60 in males[65].

Evacuees and others living close to the
exclusion zone around Chernobyl received whole
body doses in the range of 01 to 05 Gy.
Average lung doses were as high as 0.6 Gy due
largely to inhalation of radionuclides[66]. About
1,000 workers were heavily exposed on the first
day of the accident, 200,000 recovery workers
were exposed during 1986-87 and about five
million people living in Belarus, Russia and
Ukraine were exposed as a result of
radionuclide fallout. Twenty years after the
nuclear disaster at Chernobyl, a three-volume
report listed health effects associated with the
accident[68]. Fewer than 50 deaths have been
directly attributed to radiation, almost all being
highly exposed rescue workers, most of whom
died within a few months. Excess leukemia or
other cancers was not found in 5000 cleanup
workers from Estonia. Only mortality from
suicide was statistically increased{169]. From
17-25% of contaminated residents in Ukraine
and Belarus accumulated thyroid doses >1
Gyl67]. Several thousand cases of thyroid
cancer, mainly in those who were exposed as
children and adolescents, have been found in the
populations, only nine children have died of
thyroid cancer. No evidence of an increase in
the incidence of leukemia or solid cancers has
been found[67,68]. In fact, the mortality rate was
statistically lower for clean—up staff than for the
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general public[163]. A study of 8600 workers
involved in the early cleanup of the accident
site, who received external doses > 50 mSv,
showed a cancer incidence that was 12% less
than expected[69]. Analysis of a cohort of 65,905
emergency workers from 1991-1998, who
received an external dose of 0.005-03 Sv
showed annual SMRs for malignant neoplasms
that ranged from 0.73 to 0.85[162].

From 1949 to 1989, the former USSR
conducted more than 450 nuclear explosion tests
at the Semipalatinsk nuclear test site. Dolon
village in the Semipalatinsk region was 110 km
down-wind from the weapon test site. The
mean radiation dose to residents of Dolon from
nuclear fallout was about 05 Gyl[71,72,154]. No
dose-response trend was seen for total solid
cancers at doses up to 750 mSv. Cancer
mortality, including leukemia, was less than
expected among military participants at US
nuclear test sites[70].

Athermo-chemical explosion at a nuclear
waste tank in 1957 contaminated 22 villages in
the Eastern Urals of the USSR. Cancer
mortality was significantly reduced in 7,352
inhabitants -by 28%, 39% and 27% for mean
dose—cohorts of 49 cGy, 12 c¢Gy and 4.0 cGy,
respectively{73].

Twenty-three Japanese fishermen were given
whole-body exposures to 200~670 cGy gamma
radiation from an American H-bomb test in
1954,  All experienced evidence of the acute
radiation syndrome and one died within eight
months. None of the remaining twenty-two
fishermen has died of cancer by 25 years after
exposurel 74].

There were 86572 Japanese A-bomb
survivors  forty years after the bomb
detonations. About 80% of the Japanese study
population had doses < 200 mSv and 65% had
doses <100 mSv. However, 80% of the ’excess
cancer deaths’ were in the 20% receiving > 200
mSv. Of the total, 8% received > 2 Sv, 23%
received 1-2 Sv and 26% received 05-1
Sv[12,146). Estimates of cancer risk were
extrapolated from high dose/dose-rate data
using the LNT hypothesis. A U-shaped lifespan
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pattern was found in A-bomb survivors, with
increased lifespan at low doses[76-78]. Only 334
excess solid cancer deaths and 28 excess
leukemia deaths were recorded in this group. A
significant increase in the incidence of all
cancers at all ages and genders in A-bomb
survivors was not found below 200 mSv for
adults or 100 mSv for children[12]. Recent
results show not a linear but a curvilinear
response for cancer[80,81]. The solid cancer
incidence was not significantly increased, while
the leukemia incidence was significantly
increased using the LNT hypothesis. Evidence
of a threshold and radiation hormesis was seen
for leukemia at < 20 cSv[65,82]. Leukemia
incidence in Nagasaki A-bomb survivors
decreased as doses increased from 2 cGy to 50
cGy (zero at 39 cGy)86l. Morphological
malformations were significantly reduced in
children born of A-bomb surviving mothers
who received <20 cGyl[83].

Recycled steel contaminated with cobalt-60
was used in the construction of about 180
buildings in Taiwan, housing 10,000 persons for
9 to 20 vyears. The average whole-body
gamma-ray dose was 04 Sv given at an
average dose-rate of 50 mSv/y. About 1,100
persons received cumulative doses of 4 Sv from
1983 to 2003. The average dose received by the
Taiwan residents was higher than the average
doses received by Japanese A-bomb survivors
and emergency workers in the Chernobyl
accident, but similar to those residing in high
radiation background regions of the world[84].
Only seven cases of fatal cancer were found in
Taiwan building residents from 1983 to 2003.
The cancer mortality rate of residents was 35
per 100,000 person-years, while the expected
spontaneous cancer mortality rate was 116
persons per 100,000 person-years. Only three
children were born with congenital
malformations. The RRfor residents was only
0.030 for fatal cancer and 0.065 for congenital
malformations[85].

Nearly 200,000 participants in the National
Dose Registry of Canada from 1951 to 1988
were examined for cancer mortality. The
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combined SIKR for all cancers in both sexes was
0.79. For lung cancer, the SIK was 0.69, and
for leukemia, it was 0.72[87].

The Canadian fluoroscopy study involved
31,710 women being treated for tuberculosis
from 1930 to 1952[88]. The RR of breast
cancer was 066 at 15 c¢Gy and 0.85 at 25 cGy.
This study predicted 7,000 fewer breast cancer
deaths in a million women receiving 15 cGy.
The paper was revised to include only one
dose~cohort of 1-49 cGy, removing this highly
significant inverse relationship[89]. Five
Swedish mammography studies, where women
received an average of 0.12 Gy to the breast
showed an overall RR of 0.79 for breast cancer
mortality[92]. A threshold of at least 1 Sv was
found for lung cancer in Canadian and American
fluoroscopy patients with lung cancer mortality
being about 15% less than expected[90,91].

No evidence of increased cancer risk was
found in radiologists and radiologic technicians
employed after 1950 in Japan[75]. Medical
diagnostic radiation did not Increase the
incidence of leukemia at cumulative doses <200
mSv([24,93]. Radiologists and radiological
technicians did not exhibit significantly
increased cancer rates at annual doses of 10-50
mSv or at cumulative doses of <200 mSv
[94,95,155,156,158]. The RR for leukemia among
Calvert Cliffs Nuclear Power Plant workers was
0.5; the mean cumulative occupational dose was
21 mSv with a maximum dose of 470 mSv[170].
The SMR for cancer mortality in British
radiologists working from 1955 to 1979 was 0.71
relative to that of male physicians in England
and Wales[156] (Table 2). The SMR for all

cancers among US technologists was 0.86
(female) and 0.73 (male)[94]. For Japanese
technologists the SMRE for all cancers was
0.81[171], while for Canadian radiation workers
the SMR was 066 (female) and 056
(male)[172].

From 1940 through 1970 about one million
children and 8000 military personnel were
treated with nasopharyngeal radium irradiation
for swollen adenoids, tonsils, hearing lose and
chronic ear infections. Local doses were about
20 Gy mostly from beta irradiation to local
tissues, while other tissues of the head and
neck were exposed to much lower doses of
gamma irradiation. No increase in cancer of the
head and neck was found in these two
populations treated with radium[164,165].

The Hanford Thyroid Disease Study showed
a negative slope for thyroid cancer risk versus
dose to the thyroid[96]. About 35,000 Swedish
patients who received a thyroid dose of 05 Gy
from ' for diagnostic purposes experienced a
38% reduction in expected thyroid cancers[97].

Several studies show a significantly decreased
cancer death rate in areas of high background
radiation[31]. The age-adjusted cancer mortality
rate for the US population (1950-1967)
decreased with increasing background radiation
[32]. A 20% lower cancer mortality rate was
found in Idaho, Colorado and New Mexico than
in Louisiana, Mississippi and Alabama with
background radiation levels that were over three
times for those living in the southeast[32]. The
incidence of leukemia and lymphoma was 19%
less in males and 6% less in females for those
living in the US at an altitude of 2000-5300 feet

Table 2. Cancer in British Radiologists working from 1897 to 1979[156).

Tolerance or

Years Joined .
Joine Exposure Limits

SMR
(compared to UK male non-radiologist physicians)

All Cancers Lung Cancer
1897-1920 > 1 Sv year' 175 246
1921-1935 <1 Sv year 1.24 1.06
1936-1954 2 mSv day ™ or 500 mSv 112 0.74
1955-1979 50 mSv year” 0.71 0




76 HEBREEBEE 314 H25 20064F

as compared to those living at an altitude of
<500 feet[34]. Decreased cancer levels were
found in inhabitants of Yangjiang, Chinal35],
Kerala, India[36,37] and Ramsar, Iran[3839]
living in high natural radiation areas (7.5-500+
mGy ).

The Mayak plutonium workers had mean lung
doses that ranged from 1-2 Gy. Lung cancer
cases were primarily due to smoking, and most
of the remaining cases to interaction of smoking
and internal alpha-radiation[98-100,159]. A
case-control study of all morphologically
verifiable lung cancer cases from 1966 to 1991
among the Mayak nuclear workers found a
threshold of 3.7 kBq or 0.80 Gy for incorporated
plutonium-239 which could be described by
linear-quadratic or quadratic models. The
incidence of lung cancer at lung doses <0.8 Gy
was below control levels(100]. The RR for lung
cancer in Russian nuclear fuel reprocessing
plant workers was 0.39 at 0.1-12 mGy and 0.53
at 12-50 mGyl[14,160).

In a study of solid cancers, all Mayak nuclear
workers with doses <05 Gy were lumped
together[102]. No clear dose response
relationship was noted with RRvalues of 1.15,
121, 1.85, 181 and 2.20 at dose groupings of
<05 Gy, -1 Gy, -3 Gy, -5 Gy and >5 Gy from
external whole-body gamma radiation,
respectively. Excess mortality was seen only in
workers with plutonium-239 burdens exceeding
7.4 kBql102]. Data at low doses for bone and
liver cancers were not provided in two other
Mayak cancer studies[103,104].

Twenty-six male workers employed at Los
Alamos from 1944-45 received a median
effective dose of 1.25 Sv (range 0.1 to 7.2 Sv).
Only seven have died as compared to an
expected sixteen (SMR = 043)[105]. Seventeen
"terminally ill’ patients received IV injections of
95-400 nCi “*Pu between 1945 and 1947. None
who lived longer than a year died of cancer.
Four lived from 30 to 44 years free from
cancer{106].

A study of Rocky Flats Plant employees
employed from 1951 and 1989 showed a
threshold for lung cancer of 400 mSv. An

inconsistent dose-response was found at higher
doses. A statistically significant radiation
hormesis effect was also found[107]. The SMR
for all cancer deaths for plutonium nuclear
workers was 0.70; for lung cancer the SMR
was only 0.14[108]. The SMR for cancer
mortality was 0.54 and the SMRfor lung cancer
mortality was 0.20 in a later study[109].

No association between “’Po dose and cancer
mortality was seen in a cohort of 4,402 workers
at Mound Facility who had been exposed from
1944 to 1972. No dose-response trend was
observed. The relative risk for lung cancer
attwo of the dose groups was (34 and
0.54[110].

The National Research Council (BEIR VI)
estimated that 10-15% of the annual 160,000
lung cancer deaths in the United States may be
attributed to indoor radon at levels >37 Bq/ms,
with an uncertainty of 3300 to 32,000
deaths[21,93,105]. Protracted exposures to radon
were found to be more hazardous[113,114]. The
possibility of a threshold was not ruled out by
BEIR VI. BEIR VI felt that it is especially
difficult to estimate radon risks for nonsmokers
in homes using high dose data from uranium
miners[161], and that the assumption of linearity
of lung cancer risk down to the lowest
exposures could not be validated against
observational data[21].

A meta-analysis of eight case-control studies
of indoor radon and lung cancer showed
significant differences in the dose-response
relationships. Five of the studies showed
evidence of radiation hormesis[101,107]. A study
of lung cancer and indoor radon in China
showed evidence for hormesis at 200-249 Bg/m®
(RR = 0.75) in the Shenyang study[111]. A
meta-analysis of 20 case-control studies,
including seven in North America, failed to
provide RR data for dose-exposure groups in
each study, giving only the excess odds ratio
obtained by regression using the LNT
hypothesis[115]. A meta-analysis of indoor
radon and lung cancer from 13 European
case-control studies did not provide stratified
dose-cancer data from each study[116]. No
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significant risk of lung cancer was found in
never smokers in either meta-analysis.

Several reports have shown a negative
relationship between environmental radon levels
and lung cancer rates[39,79,117-120]. One study
showed a threshold at about 1,000 Bg/m® [121].
The relative risk of lung cancer in female
non-smokers in four counties of Saxony in Fast
Germany was 0.60, where the average indoor
radon levels exceeded the country average by
3-10 fold(122]. Overall, the RR for lung cancer
in females in the Free State of Saxony was
0.98°[123]. Less than expected lung cancers were
found in a high radon region in the Hungarian
village of Matraderecske[140].

Cohenl39,117,124-126] found a non-linear,
negative dose-response for lung cancer from
environmental radon using ecologic
epidemiological studies. Cohen’s study
encompassed about 300,000 radon measurements
in 1601 counties of the United States,
representing about 90% of residents living in
the U.S[126]. The trend of county lung cancer
mortality was strikingly negative even after
adjusting for smoking and 54 other
socioeconomic factors. Using 1 pCi/L (37 Ba/m®)
as the baseline risk, or 1.0, Cohen showed that
lung cancer risk increased at 0.5 pCi/L to 1.2,
and then decreased in a linear manner to about
0.80 at 5 pCi/L. At higher doses the radiation
hormesis effect began to disappear[127]. Cohen’s
data points have very small error bars which
are given in small increments of dose. Cohen
later evaluated over 500 methodological and
confounding issues, none of which explained the
large negative correlation of lung cancer with
increasing radon exposure.

Similar  inverse  relationships  between
environmental radon levels and lung cancer
rates have been shown in other studies
[118,124,125). A case-control study of lung
cancer and radon in Finland fit the Cohen curve
well[128]. The relative risk of cancer in the
lung, stomach, breast and for leukemia were
significantly less in a high radon Japanese spa
area than In a control area of much lower
radon[129]. Haynes[130] evaluated 55 counties in

England and Wales and found a statistically
significant negative association between radon
concentration and lung cancer.

SMR values of 0.52 for cancer of the tongue
and mouth, 0.35 for cancer of the pharynx and
069 for cancer of the nose were found in a
combined analysis of 11 studies of underground
miners[166]. SMR values for all non-lung
tumors in three underground mines were 0.89,
073 and 0.76 at average final cumulative
exposures of 30, 11 and 164 WLM, respectively
[161,167,168]. There was no evidence for an
association between indoor radon and childhood
leukemial123,131].

Among the US radium dial painters of the

- 1920s, there were 65 cases of bone cancers in

those receiving bone doses >10 Gy and no
cases in dial painters with bone doses
<10Gy[132-134]. A clear threshold for bone
cancer was also seen In dogs injected with
radium and other alpha-emitters[135]. A
threshold of about 1 Gy was found for bone
tumors in 900 German patients injected with
radium-244 for therapy of ankylosing spondylitis
or bone tuberculosis[64]. Female dial painters
received average bone marrow doses of 4
cGy/y. The SMR for leukemia in 1,285 US dial
painters was only 0.22{137]. No leukemia deaths
were found in female British dial painters. The
British dial painters also had a non-significant
increased lifespan[136].

Wilkinson studied the causes of mortality in
women working in twelve U.S. nuclear weapons
facilities (Table 3). The study covered a total of
67,976 women who worked at these sites before
1980. A strong radiation hormesis response was
seen in all facilities for all causes of death and
most cancers. Ten of twelve facilities showed
decreased lung cancer and eleven of twelve
showed decreased breast cancer[138]. Wilkinson
compared mortality data for female nuclear
workers who wore badges to monitor radiation
exposure with mortality in female workers who
did not wear badges. He showed that there
were 25% more deaths from all causes and 17%
more deaths from cancer in unbadged workers
than in badged workers. The relative risk for
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Table 3. Specific Standardized Mortality Ratios (Observed/Expected) Among White Females at DOE Weapons
Facilities. Data is from Wilkinson[138].

Cause of Death

Nuclear Facilty All Causes All Cancers ReSpiré:;erS;rTka Breast Cancer
Fernald 0.70 0.77 0.65 0.69
Hanford 0.75 0.78 0.87 0.85
K-25 0.81 0.77 0.80 0.71
Linde 097 092 1.07 0.98
Los Alamos 0.67 0.70 0.72 0.80
Mound 0.73 0.89 0.76 128
Pantex 0.65 059 119 0.25
Rocky Flats 054 060 0.70 0.68
Savannah Rv 0.79 0.73 0.53 0.50
X-10 0.71 0.75 0.80 0.82
Y-12 0.76 0.76 0.95 0.73
Zia 0.74 071 093 0.70

lung cancer mortality in unbadged women who
were not monitored was 49% higher than in
badged workers[138].

The thirteen year US Nuclear Shipyard
Workers Study (NSWS) evaluated workers
health at eight shipyards. The study was
carried out by Johns Hopkins Department of
Epidemiology and a final report written in
1997(139]. Workers were primarily exposed to
%Co gamma rays. The average shipyard dose

malignant tumors the SMR values were 1.12
(controls), 096 (low dose cohort) and 095
(high-dose cohort); the SMR for the highest
dose cohort was significantly less (p<0.05) than
controls. The SMR for leukemia and
hematopoietic cancers was 1.06 (controls), 0.51
(low-dose cohort) and 0.79 (high—-dose cohort)
[141].

was 76 mSvy . The study was designed to DISCUSSION
avoid the HWE in comparing age-matched and
job-matched nuclear workers and unexposed The HWE 1is the name given to the

controls. A high-dose cohort (>5 mSv) of
21872, low—-dose cohort (<5 mSv) of 10,348 and
a control cohort of 32,510 unexposed shipyard
workers were examined. The high-dose
workers demonstrated significantly lower cancer
and all-cause mortality than did unexposed
workers. The results showed a statistically
significant  decrease  (p<0.001) for nuclear
workers (SMR = 0.76) from all cause mortality
as compared fo non-nuclear workers (SMR =
1.02) at the same shipyard{141]. For all

observation of employee cohorts that showed a
reduced mortality from all causes and/or cancer
when compared to the general population[7,143].
The HWE is commonly observed in many
industries. However, the effect usually lasts for
only the first few years of employment and not
for the decades seen in nuclear workers[142].
HWE has been attributed to pre-employment
and routine medical screening for workers
employved for long periods of time at the same
site[75,77]. This assumes that those who work



Hormesis as a Confounding Factor in Epidemiological Studies of Radiation Carcinogenesis 79

at a nuclear site exhibit better medical care than
those who live in the same area.

The HWE-like response is seen in many
epidemiological studies not involving employee
screening or medical care. No reduction in
mortality from all cancers was found in men
who received annual medical physicals compared
to men who did not[144,145]. The HWE does
not explain radiation hormesis responses found
in epidemiological studies that do not include
workers. Epidemiological studies that compare
exposed and unexposed cohorts in the same
company or  workplace, where medical
procedures for employment and employee health
are similar, should best delineate the HWE from
hormesis{7]. The large size of the NSWS and
Wilkerson multi-facility studies for exposed and
control cohorts provided powerful statistically
significant evidence for radiation hormesis
[138,141]. These and other studies, which had
appropriate internal controls for entrance into
employment and medical care once emplovyed,
demonstrated clear evidence of radiation
hormesis (Table 4).

Radioadaptive and HWE-like responses are
seen in a large number of experimental animal
studies. Evidence for radiation hormesis is found
in both sexes over a wide range of
spatial-temporal dose-distribution patterns, for
varying dose-rates (acute to continuous), LET
values, external whole-body or partial-body
exposures or internal exposures in selected

organs (thyroid gland, lung or skeleton). The
Taiwan study[85] provides the most compelling
evidence for radiation hormesis with its low

dose-rate, low-LET  continuous  external
exposures. The rather ubiquitous nature of
HWE-like radiation hormesis responses in
cellular, animal, and epidemiological studies

would negate the HWE as an explanation for
the radiation hormesis phenomenon in human
population studies.

BEIR committees apply the LNT hypothesis
using a DDREF, converting risk estimates at
high dose rates to corresponding risks at low
dose-rates down to natural background
radiation. This approach guarantees that any
amount of radiation is harmful. BEIR VII
emphasizes the excess relative risks of solid
cancer for the Japanese A-bomb survivors as
representing the appropriateness of the LNT
hypothesis, but ignores a massive literature to
the contrary, as being ”“phenomenological data
with little mechanistic information:'in some
cases appear to be restricted to  special
experimental circumstances”[22]. The ICRP
committee on health risks concluded that "the
concept of adaptive responses to radiation lacks
adequate biological support and the available
data fail to provide good evidence of robust
protective effects for cancer---the possibility that
there might be a threshold dose, below which:
there would be no radiation-related cancer risk,
has been ignored’[151]. Only one page of BEIR

Table 4. Epidemiological studies with internal controls that negate the HWE.
In each study, the SMR (RR) for all cancer in radiation-exposed cohorts was compared with non-radiation cohorts
in the same workplace or environment to reduce the biases resulting in the HWE.

Worker Comparison SMR All Cancer Reference
Badged/Unbadged DOE
Female Workers 083 138
High-Dose/Control
Shipyard Workers 085 1l
Radiation/Non-Radiation Chapelcross UK
0.73 57
Nuclear Workers
Radiation/Non-Radiation
UKAEA Workers 089 174
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VII's 700+ pages discusses radiation hormesis
[19,22]. In using the LNT hypothesis, BEIR VII,
ICRP, and EPA ignore the possible presence of
any threshold[22,28-30,152,153]. Although
admitting that simple extrapolation from high
doses may not be justified, they feel that it is
scientifically justified to do so[23,150].

Data in favor of radiation hormesis are
exceedingly robust. Not presenting this data in
the evaluations by ICRP and BEIR VII is
difficult to understand. Their prize study to
demonstrate - the accuracy of the LNT
hypothesis is the Japanese A-bomb survivors.
This is a high dose and very high dose-rate
study that exhibits evidence of a threshold,
increased lifespan and radiation hormesis at low
doses. There is no evidence of an increased
cancer rate in A-bomb survivors at doses <200
mSv([149]. However, there is evidence that
A-bomb survivors are living longer[78]. If
dose-rate is taken into consideration, the
threshold level may be as high as 500 mSv.
The concept of collective dose can be ignored
when wusing a threshold and/or radiation
hormesis in assessing the stochastic cancer risk
in large populations exposed to low doses[163].

The Health Physics Society and the American
Nuclear Society position statements are that
"there is insufficient scientific evidence to
support the use of the LNT in the projection of
health effects of low-level radiation”. Raymond
Orbach of the US DOE in his letter to the
president of the National Academies expressed
his disappointment with the BEIR VII's
shortcomings[147]. Russian scientists find the
LNT hypothesis to be "highly questionable”
[163].  Participants of the "Wingspread
Conference” (1997) felt that an increase in
cancer has not been found at doses <10
rem(19]. NCRP-136 said "It is important to note
that the rates of cancer in most populations
exposed to low-level radiation have not been
found to be detectably increased, and in most
cases the rates have appeared to be
decreased”[30].

The 2005 French Academie des Sciences
(Paris) & the Academie Nationale de Medecine

$E31%E H29E 20065

report[12] is in stark contrasted with the BEIR
VII report. The French Academies concluded
that the LNT hypothesis should not be used for
assessing the carcinogenic risks of low or very
low doses[148]. They found that the dose-effect
relationship for solid tumors in the Japanese
A-bomb survivors is not linear but curvilinear
between 0 and 2 Sv[12]. The French Academy
found abundant evidence for radiation hormesis

and Dbelieved that this data should be
implemented in making radiation protection
guidelines.

Most epidemiological data describes

radiological environments of relatively high dose
exposures. The relevance of high dose data to
estimations of risk at low doses is being
question by more investigators. Pooled data
analyses or individual epidemiological
publications should provide the cancer risks for
all dose categories, including the lowest doses
for each study, and not just a single excess
relative risk estimate of cancer obtained by the
LNT hypothesis. The practice of grouping
several low dose categories into one dose group
to remove evidence of radiation hormesis should
be abandoned. The current biased practice by
some of reporting epidemiological results is
misleading.

CONCLUSIONS

The LNT hypothesis is not  justified for
assessing cancer risks at low doses. Robust
significant evidence of radiation hormesis was
found in epidemiological studies of radiation
exposed human populations at doses <200 mSv.
The ubiquitous nature of the hormetic responses
in cellular, animal and epidemiological studies
negates the HWE as an explanation for
radiation hormesis. Because the LNT hypothesis
is very well established and because many
strong radiation protection organizations are in
place, scientists and government officials are
reluctant to seriously consider the implications
of the radiation hormesis phenomenon, which
has very important public health consequences.



Hormesis as a Confounding Factor in Epidemiological Studies of Radiation Carcinogenesis

The cost in lives and money in implementing

cu

rrent radiation guidelines is enormous, while

the benefit to our health may be negative with
not less but more cancer.
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