Effect of Cobaltous Chloride on the Repair of UV-induced DNA Damage
Kim, Kug-Chan;Kim, Yung-Jin;Lee, Kang-Suk;
ABSTRACT
To develop methods to reduce radiation risk and apply such knowledge to improvement of radiation protection, the effects of cobaltous chloride known as bioantimutagen on the function of E. coli RecA protein involved in the repair of DNA damage were examined. The results demonstrated two distinct effects of cobaltous chloride on the RecA protein function necessary for the strand exchange reaction. Cobaltous chloride enhanced the ability of RecA protein to displace SSB protein from single-stranded DNA and the duplex DNA-dependent ATPase activity. RecA protein was preferentially bound with UV-irradiated supercoiled DNA as compared with nonirradiated DNA The binding of RecA protein to UV-irradiated supercoiled DNA was enhanced in a dose-dependent manner. It is likely that studies on the factors affecting repair efficiency and the DNA repair proteins may provide information on the repair of ionizing radiation-induced DNA damage and the mechanism for DNA radioprotection.