| Home | E-Submission | Sitemap | Contact Us |  
top_img
J Radiat Prot > Volume 22(2); 1997 > Article
Journal of Radiation Protection 1997;22(2):119-0.
가압중수로에서 헬륨-3이 삼중수소의 생성에 미치는 영향평가
곽성우;정범진;
An Assessment on the Contribution of $^3$He to the Tritium Generation in the CANDU PHWR
Kwak, Sung-Woo;Chung, Bum-Jin;
ABSTRACT
PHWR achieves high neutron economy by adopting heavy water as its moderator and coolant. On the other hand it permits much tritium generation, compared to LWR, due to the neutron capture reaction of deuterium in heavy water. Meanwhile in the reactor core, $^3He formed as the result of-decay of tritium, captures a thermal neutron and transforms to tritium again. The existing calculation models on tritium generation in PHWR neglect the contribution of $^3He$ in both moderator and coolant due to its relatively low solubility. However the neutron capture cross-section of $^3He$ is almost $1.6{times}10^7$ times as large as that of deuterium. That means that the dissolved amount of 0.03 ppm of $^3He$ in heavy water is enough to generate the same amount of tritium as that generated by the deuterium of total heavy water in the system. This study dealt with the contribution of $^3He$ to tritium generation. As a sample case, the contribution of $^3He$ to the tritium generation in Wolsong #1 was evaluated and compared to the measured values. According to the result of this study, it is concluded that $^3He$ in coolant contributes very much to the tritium generation but that in moderator shows negligible effects due to the low solubility and $^4He$ cover gas. At the beginning of the plant operation, the contribution of $^3He$ is slightly greater than the measured value but agrees well with the measured as the operating time increases.
Editorial Office
#319, Hanyang Institute of Technology Bldg., 222 Wangsimni-ro, Seongdong-gu,Seoul, Republic of Korea
Tel: +82-2-2297-9775   Fax: +82-2-2297-9776
Email: managing.editor@jrpr.org
About |  Browse Articles |  Current Issue |  For Authors and Reviewers
Copyright © by Korean Association for Radiation Protection. Developed in M2PI