An Assessment on the Contribution of $^3$He to the Tritium Generation in the CANDU PHWR
Kwak, Sung-Woo;Chung, Bum-Jin;
ABSTRACT
PHWR achieves high neutron economy by adopting heavy water as its moderator and coolant. On the other hand it permits much tritium generation, compared to LWR, due to the neutron capture reaction of deuterium in heavy water. Meanwhile in the reactor core, $^3He formed as the result of-decay of tritium, captures a thermal neutron and transforms to tritium again. The existing calculation models on tritium generation in PHWR neglect the contribution of $^3He$ in both moderator and coolant due to its relatively low solubility. However the neutron capture cross-section of $^3He$ is almost $1.6{times}10^7$ times as large as that of deuterium. That means that the dissolved amount of 0.03 ppm of $^3He$ in heavy water is enough to generate the same amount of tritium as that generated by the deuterium of total heavy water in the system. This study dealt with the contribution of $^3He$ to tritium generation. As a sample case, the contribution of $^3He$ to the tritium generation in Wolsong #1 was evaluated and compared to the measured values. According to the result of this study, it is concluded that $^3He$ in coolant contributes very much to the tritium generation but that in moderator shows negligible effects due to the low solubility and $^4He$ cover gas. At the beginning of the plant operation, the contribution of $^3He$ is slightly greater than the measured value but agrees well with the measured as the operating time increases.